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Abstract: Spirobisnaphthalenes have a unique structural feature involving two or three oxygen atoms acting as bridges 

connecting two original naphthalene subunits. Most of these metabolites isolated from fungi exhibit significant antifungal, 

antibacterial and cytotoxic properties to show great potential applications in medicine and agriculture. This review focuses 

on their structural characters and biological activities, as well as their structure-activity relationship, mechanism of action, 

synthesis and biosynthesis. 
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INTRODUCTION 

 Spirobisnaphthalenes (also called bisnaphthospiroketals) 
belong to a relatively new and rare family of bioactive natu-
ral products based on a 1,8-dihydroxynaphthalene derived 
spiroketal unit linked to a second, oxidized naphthalene moi-
ety [1-3]. Ogish et al. first isolated a spirobisnaphthalene 
named MK 3018 (28) from cultures of the fungus Tetraploa 
aristata in 1989 [4]. After that, more and more spirobisnaph-
thalenes have been isolated from fungi especially for which 
growing under extreme conditions (e.g. endophytic fungi, 
freshwater aquatic fungi, and marine fungi). Spirobisnaph-
thalenes have received a particular attention as their biosyn-
thesis is considered to help these fungi survive from the di-
verse environmental conditions [5-8]. 

 Spirobisnaphthalenes exhibit an elaborate range of hy-
droxylation, oxidation, and unsaturation patterns. They pos-
sess a wide range of biological properties, including antibac-
terial [9], antifungal [10], algicidal [2], herbicidal [9], an-
tiplasmodial [11], nematicidal [12], antileishmanial [13], 
cytotoxic [11] and anti-tumor activities [14]. Some of these 
compounds have been identified as novel inhibitors of ras-
farnesyltransferase [15], DNA gyrase [16], topoisomerase II 
[17] and thioredoxin-thioredoxin reductase [18], and thus are 
of interest in terms of their potential in cancer chemotherapy. 

 On the basis of the structural skeletons, spirobisnaphtha-
lenes can be divided into three types namely spiroxin-, 
preussomerin- and deoxypreussomerin-type. This review 
mainly deals with the structural types of spirobisnaphthale-
nes as well as their biological activities. In addition, struc-
ture-activity relationship, mechanism of action, biosynthesis 
and synthesis, interaction between plants and fungi, as well 
as the potential applications of these compounds will also be 
discussed. This report concentrates on work that appeared in 
the literature from 1989 to December 2009. 
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1. SPIROXIN-TYPE SPIROBISNAPHTHALENES AND 

BIOACTIVITIES 

 The structures of the spiroxins are described as two par-
tially saturated naphthalene rings joined together by two 
oxygen bridges and one carbon-carbon bridge. The saturated 
portion of each naphthalene ring is fused with an epoxide 
resulting in an unusual octacyclic ring system [14]. There 
was only five spiroxin-type spirobisnaphthalenes, that were 
spiroxins A (2), B (3), C (1), D (4) and E (5), isolated from 
an unidentified marine-derived fungus LL-37H248 from a 
soft orange coral collected from the waters of Dixon Bay, 
Vancouver Island, Canada (Fig. (1), Table 1). Of them, spi-
roxin A (2) showed anti-tumor activity in nude mice against 
ovarian carcinoma. In evaluating its probable mechanism of 
action, it was observed that in the presence of either dithio-
threitol or 2-mercaptoethanol, spiroxin A (2) caused a con-
centration-dependent nicking of pBR322 DNA, indicating 
that the compound partly exerted its cytotoxic effect through 
a single-stranded DNA cleavage. Cytotoxicity of quinones 
has been attributed to DNA modification, alkylation of es-
sential protein thiol groups, oxidation of essential protein 
thiol groups by superoxide radicals or a combination of these 
mechanisms. The oxidation state of the spiroketal carbon, a 
masked ketone, could allow the spiroxins to behave chemi-
cally as quinone epoxides, possibly causing DNA cleavage 
under reducing conditions via an oxidative stress mechanism 
involving the formation of thiol conjugates [14]. Among 
these five spiroxins, only spiroxin A (2) was evaluated for its 
bioactivities as it was the major component produced in cul-
ture, other spiroxins should also be screened in detail on 
their antimicrobial and anti-tumor activity by focusing on 
their structure-activity relationships. 

2. PREUSSOMERIN-TYPE SPIROBISNAPHTHALE-
NES AND BIOACTIVITIES 

 The preussomerins are a class of spirobisnaphthalenes 
which were first isolated as antifungal agents from the co-
prophilous fungus Preussi isomera [1,10]. These compounds 
are comprised of two unsaturated decalin units connected via 
three oxygen bridges through two spiroketal carbons located 
in each of the upper and lower decalin units. Twenty 
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Fig. (1). Structures of spiroxin-type spirobisnaphthalenes (1-5). 

 

Table 1. Spiroxin-Type Spirobisnaphthalenes and their Biological Activities 

Compound Fungus Biological activity Reference 

Spiroxin C (1) Unidentified marine-derived fungus LL-37H248 - [14] 

Spiroxin A (2) Unidentified marine-derived fungus LL-37H248 Anti-tumor activity; antibacterial activity on 

Gram-positive bacteria 

[14] 

Spiroxin B (3) Unidentified marine-derived fungus LL-37H248 - [14] 

Spiroxin D (4) Unidentified marine-derived fungus LL-37H248 - [14] 

Spiroxin E (5) Unidentified marine-derived fungus LL-37H248 - [14] 

 

preussomerins, which demonstrated multi-biological activi-
ties (Fig. (2), Table 2), have been isolated from the fungi so 
far. 

 Ras (p21) farnesyl-protein transferase (FPTase) is a het-
ero-dimeric enzyme that catalyses the transfer of the farnesyl 
group from farnesyl pyrophosphate (FPP) onto cysteine 186 
at the C-terminus of the Ras peptide. This enzyme plays a 
critical role in the post-translational modification of a huge 
range of different proteins involved in intracellular signaling 
[19,20]. There is now evidence that FPTase inhibitors have 
been developed as potential anti-tumor therapeutic drugs, 
blocking the growth of human cancers. It is considered to be 
the first step toward the development of an effective agent 
for treatment of cancers, particularly those with mutated ras 
gene such as colon and pancreatic carcinomas [21]. Four 
preussomerins (7, 9, 19, 21), isolated from an unidentified 
fungus MF5916, acted as novel inhibitors of FPTase with the 
median inhibitory concentration (IC50) values range of 1.2-
17 μM. Preussomerins G (9) and D (7), which contained a 
conjugated ketone in the lower half of the molecule, exhib-
ited more active than preussomerins H (19) and I (21), which 
were reduced product and Michael adduct, respectively. This 
characteristic seems to be critical for the activity and may 
serve as a Michael acceptor for nucleophilic Ras-CVLS. It is 
of interest in terms of the potential of preussomerins in can-
cer chemotherapy though the accurate mechanism of inhibi-
tion is not clear [15]. 

 Similarly, three preussomerins EG1 (10), EG2 (24) and 
EG3 (25) from the endophytic fungus Edenia gomezpompae 
derived from the leaves of Callicarpa acuminata (Verbena-
ceae) collected from the ecological reserve El Eden, Quin-
tana Roo, Mexico [22]. Of them, preussomerin EG1 (10) 
displayed the strongest antifungal activity on almost all the 
tested fungi. The structure-activity relationship reveals that 
the presence of the C-2', C-3' double bond is possibly re-
sponsible for the higher bioactivity of preussomerin EG1 
(10). Preussomerin EG1 (10) was also isolated from the 
Panamanian endophytic fungus Edenia sp. which caused 
significant inhibition of the growth of Leishmania donovani 
in the amastigote form with the IC50 value of 0.12 μM [13]. 

 Tuberculosis and malaria are by far the most serious of 
the world's deadly diseases, and the search for new drug 
leads is an urgent need due to the emergence of drug-
resistant strains of both mycobacteria and parasites. Preus-
somerins E (8), F (13), G (9), H (19) and I (21) along with 
3'-demethylpreussomerin I (20) were isolated from a lichen 
fungus Microsphaeropsis sp. BCC 3050 to show the moder-
ate antimycobacterial activity on Mycobacterium tuberculo-
sis H37Ra, antiplasmodial activity on Plasmodium falcipa-
rum, and significant cytotoxicity against KB, BC-1 and vero 
cell lines [11]. 

 Six preussomerins (7, 12, 14-17) from the freshwater 
fungus YMF 1.01029 were screened to show moderate 
nematicidal activities with the IC50 values between 100 and 
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Fig. (2). Structures of preussomerin-type spirobisnaphthalenes (6-25). 

200 μg/mL at the 24 h time point against Bursaphelenchus 

xylophilus, a plant-parasitic and fungal-feeding nematode 

that caused great losses to pine forests, especially in several 

Asian countries. Among them, preussomerin D (7) was the 

most potent [12]. Furthermore, in the standard disk assay at 

50 μg/disk, preussomerin D (7) was found to be active 

against some fungi (Bipolaris maydis, Cochliobolus sativus, 

Fusarium verticillioides) and bacteria (Bacillus subtilis, Ba-

cillus laterosporus, Staphylococcus aureus) [23]. 

3. DEOXYPREUSSOMERIN-TYPE SPIROBISNAPH-

THALENES AND BIOACTIVITIES 

 The deoxypreussomerins are comprised of two unsatu-

rated decalin units connected via two oxygen bridges 

through one spiroketal carbon located in one of the decalin 

units. About 56 deoxypreussomerins have been isolated from 

the fungi so far with their multi-biological activities (Fig. 

(3), Table 3). 

 Four antileishmanial deoxypreussomerins, palmarumycin 
CP2 (30), palmarumycin CP17 (31), palmarumycin CP18 (37) 
and CJ-12,371 (33) were isolated from the Panamanian en-
dodphytic fungus Edenia sp. which caused significant inhibi-
tion of the growth of Leishmania donovani in the amastigote 
form with the IC50 values range of 0.62-8.40 μM [13]. 

 Two deoxypreussomerins CJ-12,371 (33) and CJ-12,372 
(34) from the fermentation broth of an unidentified fungus 
N983-46 were screened to inhibit both DNA supercoiling 
and relaxation mediated by Escherichia coli DNA gyrase. 
Both compounds had antibacterial activity against several 
species of Gram-positive pathogenic bacteria, including 
ciprofloxacin-resistant and susceptible Staphylcoccus aur-
eus, Staphylococcus epidermidis, Streptococcus pyogenes,
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Table 2. Preussomerin-Type Spirobisnaphthalenes and their Biological Activities 

Compound (alternative name) Fungus Biological activity Reference 

Preussomerin A (6) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1,2] 

Preussomerin D (7) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1] 

 Unidentified fresh-water-derived fungus 

YMF 1.01029 
Nematicidal activity [12] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

 Hormonema dematioides Antimicrobial activity [24] 

 Unidentified fresh-water-derived fungus 

YMF 1.01029 
Antifungal and antimicrobial activity [23] 

Preussomerin E (8) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1] 

 Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 
cytotoxic activity 

[11] 

Preussomerin G (9) Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 

cytotoxic activity 
[11] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

Preussomerin EG1 (10) Edenia sp. Antileishmanial activity [13] 

 Edenia gomezpompae Antifungal activity [22] 

Preussomerin B (11) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1] 

Ymf 1029 A (12) Unidentified fresh-water-derived fungus 

YMF 1.01029 
Nematicidal activity [12] 

Preussomerin F (13) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1] 

 Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 

cytotoxic activity 
[11] 

Ymf 1029 B (14) Unidentified fresh-water-derived fungus 

YMF 1.01029 
Nematicidal activity [12] 

Ymf 1029 D (15) Unidentified fresh-water-derived fungus 

YMF 1.01029 
Nematicidal activity [12] 

Ymf 1029 C (16) Unidentified fresh-water-derived fungus 
YMF 1.01029 

Nematicidal activity [12] 

Preussomerin C (17) Preussia isomera Cain 

(CBS 415.82) 

Antifungal activity [1] 

3’-O-desmethyl-1- 

epipreussomerin C (18) 

Sporormiella vexans Antifungal and antibacterial activity [25] 

Preussomerin H (19) Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 

cytotoxic activity 
[11] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

Preussomerin K (20) 

(3’-O-demethylpreussomerin I) 

Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 

cytotoxic activity 
[11] 

 Unidentified endophytic fungus - [26] 

Preussomerin I (21) Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and 
cytotoxic activity 

[11] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

Preussomerin J (22) Unidentified endophytic fungus - [26] 

Preussomerin L (23) Unidentified endophytic fungus - [26] 

Preussomerin EG2 (24) Edenia gomezpompae Antifungal activity [22] 

Preussomerin EG3 (25) Edenia gomezpompae Antifungal activity [22] 
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(Fig. 3). Contd….. 
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Fig. (3). Structures of deoxypreussomerin-type spirobisnaphthalenes (26-81). 

agalactiae, and Enterococcus faecalis with minimum inhibi-

tory concentrations (MICs) ranging from 25 to 100 μg/mL 

[16]. 

 Deoxypreussomerins A (50) and B (30) were isolated 

from an unidentified fungus MF5916, with modest inhibitory 

activity on farnesyl-protein transferase (FPTase) with the 

IC50 values of 10 and 12 μM, respectively [15]. 

 Eighteen deoxypreussomerins from the endophytic fun-

gus Coniothyrium palmarum derived from Lamium pur-

pureum (Labiatae) were tested for antibacterial, antifungal 

and algicidal activity. Palmarumycins C2 (50), C12 (57) and 

CP3 (79) were considerably more active than others. An 

oxygen function at C-8 seems to increase the general bio-

logical activity [9,27]. 

 The cytosolic thioredoxin redox system composed of 
thioredoxin-1 and the NADPH-dependent thioredoxin reduc-
tase-1 reductase is an important regulator of cell growth and 
survival. As thioredoxin-1 is usually overexpressed in many 
human tumors where it is associated with increased cell pro-
liferation, decreased apoptosis, and decreased patient sur-
vival, thioredoxin reductase-1 should provide a target to in-
hibit the activity of the overexpressed thioredoxin-1 for the 
development of novel anti-tumor agents. It was found that 
palmarumycin CP1 (26) was a potent inhibitor of thioredoxin 
reductase-1 [31]. A water-soluble prodrug PX-916 of a pal-
marumycin CP1 analogue was developed to rapidly release 
the parent compound either at physiologic pH or in plasma, 
but was stable in acid pH, allowing its i.v. administration 
[31]. Diepoxine  (also named Sch 49209, 66) was isolated 
from three fungal strains which were Nattrassia mangiferae, 
Coniothyrium palmarum and an unidentified fungus LL-

07F275. It showed multi-biological activities such as inhibi-
tory activity on thioredoxin-thioredoxin reductase system, 
antifungal and anti-tumor activities [17,28-30]. 

 Diepoxine  (also named Sch 53514, palmarumycin C13 

and cladospirone bisepoxide, 72) was also isolated from 
some fungi which were Cladosporium chlorocephalum, Nat-
trassia mangiferae, and two unidentified fungal strains LL-
07F275 and F-24'707. It showed antifungal, antibacterial and 
herbicidal activities as well as inhibitory activity on phos-
pholipase D (PLD) [9,28,32-35]. 

 A series of deoxypreussomerins were isolated from the 
fermentation broth of the fungi Nattrassia mangiferae and an 
unidentified fungus [17,29,32,36,37]. Of them, Sch 49209 
(66), Sch 49210 (69), Sch 50673 (71), Sch 50676 (56), Sch 
53514 (72) and Sch 53516 (73) revealed potent inhibitory 
activity against the invasion of HT1080 human fibrosarcoma 
cells through a matrigel membrane in the anti-tumor invasion 
chamber assay. Sch 49210 (69), Sch 49211 (61), Sch 49212 
(62), Sch 53514 (72), Sch 53516 (73), Sch 53823 (54) and 
Sch 53825 (58) also exhibited potent inhibitory activity in 
phospholipase D (PLD) assay [17,29,32,36,37]. 

4. BIOSYNTHESIS 

 The biosynthesis investigation of spirobisnaphthalenes 
has been partially clarified. Biosynthesis of cladospirone 
bisepoxide (72) was studied by feeding 

13
C-labeled acetate to 

growing cultures of the fungus Sphaeropsidales sp. (strain F-
24'707) [47]. The results indicated that both naphthalene 
moieties derived from the same pentaketide precursor via a 
fungal polyketide synthase (PKS). Further modifications and 
incorporation of oxygen from air via postulated monooxy-
genase led to cladospirone bisepoxide (72). Otherwise, the 
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Table 3. Deoxypreussomerin-Type Spirobisnaphthalenes and Their Biological Activities 

Compound (alternative name) Fungus Biological activity Reference 

Palmarumycin CP1 (26) Coniothyrium palmarum Inhibitory activity on the thioredoxin-
thioredoxin reductase system 

[18] 

Palmarumycin C1 (27) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

MK 3018 (28) Tetraploa aristata Antibacterial activity [4] 

Preussomerin CP4 (29) Coniothyrium palmarum Antifungal and antibacterial activity [27] 

Palmarumycin CP2 (30) 
(deoxypreussomerin B) 

Edenia sp. Antileishmanial activity [13] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

 Coniothyrium palmarum Antifungal and antibacterial activity [27] 

 Edenia gomezpompae Antifungal activity [22] 

Palmarumycin CP17 (31) Edenia sp. Antileishmanial activity [13] 

 Unidentified fungus Dzf12 - [39] 

Cladospirone B (32) Sphaeropsidales sp. F-24’707 - [38] 

CJ-12,371 (33) Edenia sp. Antileishmanial activity [13] 

 Unidentified fungus N983-46 Inhibitory activity on DNA gyrase [16] 

CJ-12,372 (34) Unidentified fungus N983-46 Inhibitory activity on DNA gyrase [16] 

Cladospirone F (35) Sphaeropsidales sp. F-24’707 - [38] 

Palmarumycin C5(36) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Palmarumycin CP18 (37) Edenia sp. Antileishmanial activity [13] 

Cladospirone H (38) Sphaeropsidales sp. F-24’707 - [38] 

Cladospirone I (39) Sphaeropsidales sp. F-24’707 - [38] 

Decaspirone A (40) Decaisnella thyridioides - [40] 

Decaspirone D (41) Decaisnella thyridioides - [40] 

Decaspirone E (42) Decaisnella thyridioides - [40] 

Decaspirone F (43) Helicoma viridis Antibacterial activity [41] 

Decaspirone B (44) Decaisnella thyridioides - [40] 

Decaspirone G (45) Helicoma viridis Antibacterial activity [41] 

Decaspirone C (46) Decaisnella thyridioides - [40] 

Palmarumycin M2 (47) Microsphaeropsis sp. - [42] 

Palmarumycin M1 (48) Microsphaeropsis sp. - [42] 

Decaspirone H (49) Helicoma viridis Antibacterial activity [41] 

Palmarumycin C2 (50) (deoxypreussome-
rin A) 

Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

 Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and cyto-
toxic activity 

[11] 

 Unidentified fungus MF5916 Inhibitory on Ras FPTase [15] 

Palmarumycin C3 (51) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Cladospirone C (52) Sphaeropsidales sp. F-24’707 Antibacterial and algicidal activity [38] 

Cladospirone G (53) Sphaeropsidales sp. F-24’707 - [38] 

Bipendensin (54) (Sch 53823; palmaru-
mycin C11; palmarumycin JC1) 

Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

 Microsphaeropsis sp. BCC 3050 Antimycobacterial, antiplasmodial and cyto-
toxic activity 

[11] 

 Unidentified fungus Inhibitory activity on PLD [29] 
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(Table 3). Contd….. 

Compound (alternative name) Fungus Biological activity Reference 

Spiropreussione A (55) Preussia sp. - [43] 

Sch 50676 (56) Nattrassia mangiferae Anti-tumor activity [17] 

Palmarumycin C12 (57) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Sch 53825 (58) Unidentified fungus Inhibitory activity on PL D [29] 

Palmarumycin C4(59) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Palmarumycin C7 (60) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Sch 49211 (61) Nattrassia mangiferae Inhibitory activity on PLD [37] 

Sch 49212 (62) Nattrassia mangiferae Inhibitory activity on PLD [37] 

Palmarumycin C8 (63) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Cladospirone E (64) Sphaeropsidales sp. F-24’707 - [38] 

Palmarumycin C9(65) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Diepoxine  (66) 

(Sch 49209) 

Unidentified fungus LL-07F275 Antifungal activity [28] 

 Coniothyrium palmarum Inhibitory activity on thioredoxin-thioredoxin 
reductase system 

[18] 

 Nattrassia mangiferae Anti-tumor activity [30] 

 Nattrassia mangiferae Anti-tumor activity [36] 

Diepoxine  (67) Unidentified fungus LL-07F275 Antifungal activity [28] 

Cladospirone D (68) Sphaeropsidales sp. F-24’707 Antibacterial, algicidal activity [37] 

Sch 49210 (69) Nattrassia mangiferae Inhibitory activity on PLD; anti-tumor activity [32,44] 

Palmarumycin C10(70) 

(diepoxin ) 

Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Sch 50673 (71) Nattrassia mangiferae Anti-tumor activity [17] 

 Unidentified fungus LL-07F275 - [45] 

Diepoxine  (72) (Sch 53514; palma-
rumycin C13; cladospirone bisepoxide) 

Unidentified fungus LL-07F275;  

Coniothyrium sp. 

Antifungal, antibacterial and herbicidal activity [9,28] 

 Nattrassia mangiferae Inhibitory activity on PLD; anti-tumor activity [32] 

 Cladosporium chlorocephalum - [33,34] 

 Unidentified saprophytic fungus strain 
F-24'707 

Antifungal and antibacterial activity [35] 

 Unidentified fungus Dzf12 Antibacterial and antifungal activity [39] 

Diepoxine  (73) (Sch 53516; palma-
rumycin C14) 

Unidentified fungus LL-07F275;  

Coniothyrium sp. 

Antifungal, antibacterial and herbicidal activity [9,28] 

 Nattrassia mangiferae Inhibitory activity on PLD; anti-tumor activity [32] 

 Unidentified fungus Dzf12 Antibacterial and antifungal activity [39] 

Diepoxine  (74) Unidentified fungus Dzf12 Antibacterial and antifungal activity [39] 

Palmarumycin C15 (75) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Diepoxin  (76) Unidentified fungus Dzf12 - [39] 

 Unidentified fungus LL-07F275 - [45] 

Diepoxin  (77) Unidentified fungus LL-07F275 - [45] 

Palmarumycin C16 (78) Coniothyrium sp. Antifungal, antibacterial and herbicidal activity [9] 

Preussomerin CP3 (79) Coniothyrium palmarum Antifungal and antibacterial activity [27] 

Palmarumycin CP4a (80) Coniothyrium palmarum - [46] 

Palmarumycin CP5 (81) Coniothyrium palmarum - [46] 
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inhibition of the biosynthesis after addition of tricyclazole 
confirmed that possible precursors could derive from the 1,8-
dihydroxynaphthalene (DHN, 86) biosynthesis as proposed 
by Krohn et al. [9]. The proposed intermediates of the cla-
dospirone bisepoxide biosynthesis are outlined in Fig. (4). 

 Van der Sar et al. studied the biosynthesis of spiro-
mamakone A (87), a potently cytotoxic and antimicrobial 
compound from an unidentified endophytic fungus isolated 
from the New Zealand native tree Knightia excelsa (Pro-
teaceae), that confirmed the polyketide originating from 
palmarumycin CP1 (26) belonging to the spirobisnaphthalene 
class [48]. The proposed biosynthesis pathway is shown in 
Fig. (5). The biosynthesis route before palmarumycin CP1 
(26) was the same as that in Fig. (4). Palmarumycin CP1 (26) 
was oxidized by rearrangement of the coupled moiety to a 
dihydroxynaphthyl epoxide intermediate (88). After oxida-
tive cleavage, decarboxylation and deprotonation steps, a 
symmetric enedione carbanion (89) was formed. In a 
Knoevenagel-type reaction this stabilized carbanion interme-
diate could attack the aldehyde to generate spiro-mamakone 
A (87). Furthermore, Bode and Zeeck used UV mutagenesis 

and enzyme inhibitors as tools to elucidate the late biosyn-
thesis of the spirobisnaphthalenes in detail [49]. 

 Krohn and coworkers proposed a biosynthesis of palma-
rumycin CP1 (26) based on a 1,8-dihydroxynaphthalene or 
suitable phenolic derivative precursor [9]. According to their 
hypothesis, coupling could occur via a phenol oxidation as 
often encountered in polyketide biosynthesis, and the chlo-
rinated palmarumycins could be derived from addition of 
chloride ions to epoxides. In order to prove this mechanism, 
palmarumycin C9 (65) was treated with methanolic hydro-
chloric acid (Fig. (6)). As expected, formation of chlorinated 
palmarumycin C4 (34) from palmarumycin C9 (65) could be 
successfully detected by TLC. 

5. SYNTHESIS AND ABSOLUTE STEREOCHEMIS-

TRY 

 The unique skeleton and various biological activities of 
spirobisnaphthalenes have been attracting the interests of 
synthetic chemists, and synthesis of this class of compounds 
has recently been appeared in the literature [18,50-72]. The 
synthesis of preussomerin G (9), preussomerin F (13), preus-
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Fig. (4). Proposed biosynthesis pathway of cladospirone bisepoxide (72) in the fungus Sphaeropsidales sp. (strain F-24'707) [47]. PKS: 

polyketide synthase; – H2O: dehydratase reactioin; [H]: reduction reaction; [O]: oxygenation reaction; 82: 1,3,6,8-tetrahydroxynaphthalene; 

83: scytalone; 84: 1,3,6-trihydroxynaphthalene; 85: vermelone; 86: 1,8-dihydroxynaphthalene (DHN). 
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somerin K (20), preussomerin L (22), preussomerin I (24), 
palmarumycin CP1 (25), palmarumycin CP2 (29), CJ-12,371 
(32), deoxypeussomerin A (49), palmarumycin C11 (53), 
diepoxin  (65) and their analogues have been reported since 
1997 [18,50-72]. The absolute configurations of the palma-
rumycins CP3 (79), C2 (50), C9 (65), C10 (70) and C12 (57) 
along with spiroxin A (2) were assigned with the circular 
dichroism (CD) spectra in detail [73-75].  

HCl

65 34

O

O

O

OO

O O
O

Cl

O

OO

O O

 

Fig. (6). Transformation of chlorinated palmarumycin C4 (34) from 

palmarumycin C9 (65). 

 

6. SPIROBISNAPHTHALENES FROM PLANTS 

 Three deoxypreussomerin-type spirobisnaphthalenes, 
palmarumycins CP1 (26), JC1 (54) and JC2 (90) were iso-
lated from stems of Jatropha curcas (Euphorbiaceae) [76]. 
Both palmarumycins JC1 and JC2 showed their antibacterial 
activity on Staphylococcus aureus [76], and palmarumycin 
JC2 was further screened to exhibit antimycobacterial, anti-
malarial, antifungal, and cytotoxic activities [78]. Bi-
pendensin (or called palmarumycin CP1, 26) was obtained 
from the sapwood of the African tree Afzelia bipendensis 
(Caesalpiniaceae) in 1993 [77]. Palmarumycins JC1 and JC2 
were also isolated from fruits of Diospyros ehretioides 
(Ebenaceae) [78]. It is worth noticing that palmarumycin 

JC2 (90) has not been isolated from the fungal samples (Fig. 
(7)). 

90

HO

OHO

O O

 

Fig. (7). Structure of palmarumycin JC2 (90). 

 

 Up to now, spirobisnaphthalenes have been isolated from 
the three different plant families i.e. Caesalpiniaceae (Afzelia 
bipendensis), Ebenaceae (Diospyros ehretioides) and 
Euphorbiaceae (Jatropha curcas). This is rather unusual 
from the chemotaxonomic point of view, while certain sec-
ondary metabolites could be employed as chemotaxonomic 
markers in particular plant genera [79-82]. It was proposed 
that the isolated spirobisnaphthalenes were not as the plant 
constituents, but they might be from the endophytic fungi 
present in the host plants. These findings suggested a new 
approach for searching new fungal metabolites on plant ma-
terials that may be deliberately infected by fungi, or on those 
with the associated endophytic fungi. 

7. SPIROBISNAPHTHALENE PRODUCTION IN MY-

CELIAL SUSPENTION 

 Some spirobisnaphthalenes such as spiroxins A (2), B 
(3), C (1), D (4) and E (5) are easily excreted into liquid me-
dium from the fungal cells in suspension culture by treat-
ment of macroporous resin. Cultivation of the fungus LL-
37H248 in potato dextrose broth containing suspended 
macroporous resin HP20 yielded high titers of spiroxins. 
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Fig. (5). Proposed biosynthesis pathway of spiro-mamakone A (87) [48]. 
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Production rates were approximately 35-fold greater in the 
presence of HP20 than in fermentations without the resin 
[14]. 

8. CLOSING REMARKS 

 In the past decades, about 81 spirobisnaphthalenes have 
been reported from at least 15 known fungal species and 9 
un-identified fungal strains. This growing family of spirobis-
naphthalenes exhibited a variety of biological activities espe-
cially for the cytotoxicity, inhibition of farnesyl-protein 
transferase and thioredoxin reductase-1 [83-85]. Research to 
date indicates that further studies on the biosynthetic path-
way, metabolic regulation, structure-activity relationship, 
mechanism of action, physiological and ecological roles of 
the spirobisnaphthalenes in fungi as well as their practical 
applications in medicine and agriculture may be confidently 
expected. 
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